
www.iron.io

SERVERLESS
COMPUTING
DEVELOPER EMPOWERMENT REACHES NEW HEIGHTS

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

2. © 2016 Iron.io, Inc.

Digital transformation is at the top of mind across every
organization, regardless of how rooted in technology

they may be. Continually keeping up with the rapid pace of
innovation is essential to maintain competitive advantage,
and smart companies have recognized that it’s the
developers that hold the keys to success with their ability to
build and ship software. Technological advancements across
the entire cloud ecosystem, complemented by cultural shifts
within organizations, have helped remove roadblocks from
the software development lifecycle, further paving the way
for developers to deliver continuous innovation.

Now imagine a future where the notion of provisioning and
managing infrastructure resources is completely removed
from the development process – in production and at any
level of scale. Distributed systems are constructed to react
to surrounding environments by spinning up ephemeral
compute resources that process dynamic workloads on
demand. For the developer, the only interface is APIs – the
systems are intelligent enough to automate the workloads
entirely behind the scenes, while being fully aware of the
surrounding environments at all times. While this may
appear out of reach, it represents a future that has already
arrived through a new architectural pattern, aptly named
“serverless”.

This white paper details the key benefits and implications
of a serverless architecture by walking through the entire
development lifecycle. While a key tenet of this theme is
abstracting away the underlying operations, having a clear
understanding of what’s happening behind the scenes
will allow developers, architects, and business owners to
make educated decisions about the future direction of their
systems and applications.

Introduction to Serverless Concepts
The Evolution of the Modern Cloud
Preparing To Go Serverless
The Serverless Development Lifecycle
Why Serverless Matters

3
4
6

10
14

TABLE OF CONTENTS

ABOUT THE AUTHOR
IVAN DWYER

Ivan is Head of Business Development at
Iron.io, working with partners across the
entire cloud technology and developer
services ecosystem to form strategic
alliances around real world business
solutions.

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

3. © 2016 Iron.io, Inc.

FASTER TIME TO MARKET
Developers with a clear path to
delivery are able to focus their core
efforts on building the features that
drive the business forward in shorter
release cycles.

MORE EFFICIENT USE OF RESOURCES
Breaking down applications into
smaller, discrete units of compute
that only use up resources when
needed makes the most of what’s
available and reduces overall spend.

LOWER TOTAL COST OF OWNERSHIP
Investing in workload optimization
and intelligent systems design up-
front leads to lower administrative
costs over time, and sets the founda-
tion for future growth.

LESS MAINTENANCE
Fully automated workflows removes
the need for manual oversight,
enabling a fully streamlined
development lifecycle.

KEY BENEFITS

INTRODUCTION TO
SERVERLESS CONCEPTS
Despite the implications, a serverless architecture doesn’t
mean getting rid of the data center through some form of black
magic that powers compute cycles in thin air. At its core, the
concept promises a serverless experience for developers;
as in never having to think about provisioning or managing
infrastructure resources to power workloads at any scale. This
is done by decoupling application components as independent
microservices that automatically run when a predetermined
event occurs. These events arise from a variety of sources
– from an application such as a webhook, in the real world
such as a sensor capture, within a system such as a database
change, or on a schedule such as a cron job. The automated
workflow happens entirely behind the scenes without any need
for manual intervention – spin up, execute, tear down. Rinse
and repeat at massive scale.

It’s important to note that nothing about this pattern discounts
the importance of proper infrastructure management. The
primary goal is to abstract the complexities away from
the development process, which in fact places even more
emphasis on finely tuned system administration in order to
enable such automated capabilities. DevOps best practices
have set the stage within the modern enterprise by promoting
continuous integration and delivery models that allow for
dozens, or even hundreds of deploys per day. What’s different
about the serverless architecture is that the underlying
operations are manipulated via API instead of through scripts.
In shifting the configuration from the systems layer to the
application layer, the mantra Infrastructure as Code thus
becomes Infrastructure in Response to Code.

IN SHIFTING THE CONFIGURATION FROM
THE SYSTEMS LAYER TO THE APPLICATION
LAYER, THE MANTRA INFRASTRUCTURE AS
CODE THUS BECOMES INFRASTRUCTURE IN
RESPONSE TO CODE.

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

4. © 2016 Iron.io, Inc.

While many of the associated concepts and patterns have existed for some time, it’s been the convergence of
a few parallel evolutions that have truly brought forth this serverless future. Without any of the following, we
wouldn’t be able to have this conversation.

THE EVOLUTION OF
THE MODERN CLOUD

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

5. © 2016 Iron.io, Inc.

MICROSERVICES
Born from the challenges of running distributed
applications at scale, microservices has emerged as a
dominant pattern for breaking apart applications into
more manageable pieces. By decoupling application
components as independent services that each perform
a single responsibility, individual workloads become
portable enough to distribute via automated workflows.

CONTAINERS
Portability is meaningless without consistency across
environments. Container technologies such as Docker
have taken the industry by storm through effective
process isolation. Containers allows microservices to
be developed, deployed and executed anywhere with
the confidence that the runtime will be as expected.

SMALLER DEVELOPMENT TEAMS WHO CAN
CONFIDENTLY CLAIM OWNERSHIP AND RESPONSIBILITY
ENABLE THE CONTINUOUS INNOVATION REQUIRED TO
STAY COMPETITIVE.

Serverless computing represents the intersection of these modern cloud movements; where architectural
patterns meets development culture in a way that delivers true value to the business. Smaller development
teams who can confidently claim ownership and responsibility enable the continuous innovation required to
stay competitive.

DEVOPS
These reactive workflows then need to be complemented
with automated provisioning and deprovisioning to fully
realize a serverless experience. The goal is to abstract
away everything but the API, but that means the
underlying system must be capable of handling all the
infrastructure operations beyond just scale, including
health monitoring and failure handling.

EVENT-DRIVEN
The rise of all kinds of connected devices has led to a
transition from the traditional request/response model
of instantiation towards more responsive models. With
the ability to react to device, system and application
changes automatically, containerized microservices
run entirely behind the scenes without manual
intervention.

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

6. © 2016 Iron.io, Inc.

PREPARING TO GO
SERVERLESS
Any new development trend capturing headlines needs to be backed
up with real world solutions in order to escape from the hype cycle
to the enterprise. Given that serverless computing is the culmination
of several parallel evolutions that have already taken root in today’s
enterprises, it is poised to become the next significant technology
shift. With that in mind, let’s examine what it takes to implement these
patterns into our own applications.

 BACKEND TRANSACTIONS

These include individual user or device actions such as processing a
credit card or sending an email. When applications demand real-time
responses, any processing should be offloaded to the background, so it
doesn’t interfere with the user experience. Individual transactions are
easy to decouple as containerized microservices, at which point they
can be triggered to execute asynchronously without the need for an
immediate response.

 BATCH PROCESSES

Likely candidates for serverless batch processing are heavy lifting
workloads for crunching a large data set or encoding a multimedia file.
The most common pattern in the history of computing still has a strong

IDENTIFYING THE RIGHT CANDIDATES

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

7. © 2016 Iron.io, Inc.

place in the modern cloud. What’s changed the most aside from the
compute environment is the need for a manual start. An event can
trigger a workflow that runs batch jobs concurrently across a pool of
available compute resources.

 DATA PIPELINES

A data pipeline may include extraction, transformation, and loading of
data such as analyzing machine data for an IoT system or delivering
filtered logs to a data warehouse. The explosion of connected devices
has brought forth exponential growth in the number of data sources
and sheer volume, requiring an awful lot of processing power to extract
meaningful insight. Getting data from source to destination happens in
the background, with any logic inserted along the way.

 BOTS

With automated workflows being a key theme with serverless
computing, a natural extension is automated services. Chatbots or
integration hooks are meant to run independently in response to events
- user or system generated. The input is taken in as a payload, the
process is executed, and then the results are delivered back.

 SCHEDULED JOBS

Examples of scheduled jobs could be regular occurring jobs such as
a daily web scraper or weekly email blast. Cron jobs are a staple of
any system, but are also easy to forget and hard to manage. With a
serverless architecture, a schedule is simply a form of event trigger,
used to kick off any type of background workflow as shown here.

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

8. © 2016 Iron.io, Inc.

The event-driven methods for instantiating workloads means giving
extra care to what happens once invoked. Real world events have
a tendency to pile up, which can quickly lead to system overload
or resource maxing if not careful. If you treat each event as an API
endpoint, then you’ll want to ensure you have the right policies in place
for authentication, authorization, rate limiting, error handling, and
more. First things first, it’s important to understand where different
events can be sourced. When triggered, the job is posted to a queue
that either pushes the message to a running worker node, or holds the
message until a worker node is available.

 SYSTEM CHANGES

Infrastructure resources can be wired to capture
internal events, which are then passed as messages to trigger
a workflow. For example, this can be a notification when a file is
uploaded or when a database record is changed.

 APPLICATION CHANGES

Applications can incorporate webhook urls as a trigger method. Many
services now incorporate webhooks across events, allowing developers
to map the url to an API endpoint that automatically invokes a workflow.

 STREAM

Data as a stream of events is common in modern applications, with a
strong need for heavy processing capabilities at the end. Workers can
be configured to concurrently process data across a pool of compute
resources.

 SCHEDULE

Regular occurring jobs such as a daily web scraper or weekly email
blast are a staple of any application, but are also easy to forget and

UNDERSTANDING EVENT TRIGGERS

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

9. © 2016 Iron.io, Inc.

hard to manage through cron for example. In this context, a schedule is
simply a form of event that triggers the workflow in the background.

 MANUAL

Any job can be invoked manually, either via direct API call or CLI. Aside
from testing purposes, some jobs are built to be executed on demand
such as a database query or system cleaner. When invoked, the job is
placed in the queue just as any other event-driven method.

NAVIGATING THE VENDOR LANDSCAPE

While many of the associated concepts have existed for some time,
the serverless trend really caught on with the introduction of AWS
Lambda in late 2014. Not to be outdone, Microsoft and Google recently
announced their own versions, Functions and Google Functions,
respectively. Although you may think the clear choice would be to pick
the infrastructure provider where your applications are running, there
are some additional points to consider.

While a key benefit to an IaaS-native solution is the ability to leverage
internal system events to trigger the automated workflows, this could
also be seen as a strong deterrent in terms of vendor lock-in at the
technology level. Once you start coupling your business logic to the
surrounding system, you are stuck in that environment – much like the
legacy middleware era we’ve done such a great job escaping. Unless
you are confident that you are going to run in the same, single cloud
provider for the next 5-10 years, it’s worth considering what it means to
lock-in at that level.

For a solution independent of any sole infrastructure provider,
Iron.io offers a container-based serverless computing platform that
is available in any cloud, public, private, or hybrid. As more and more
developers adopt Docker as the preferred development environment, it
becomes more natural to work in this style with a portable, container-
based solution.

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

10. © 2016 Iron.io, Inc.

THE SERVERLESS
DEVELOPMENT LIFECYCLE
Shifts in application architecture mean making adjustments to the
development process in order to reap the benefits. The serverless
experience we’re looking to achieve will kick in once the jobs are
developed and properly prepared for automated execution. Iron.io
provides developers and end-to-end platform for powering job-centric
workloads through an easy to use API and interface. The following
is a walkthrough of the Iron.io development process, with some best
practices along the way.

1. BUILDING THE JOB

Developing with Docker is a breeze as you can work across
multiple languages and environments without clutter
or conflict. When your job logic in place, you specify the
runtime by writing a Dockerfile that sets the executable,
dependencies, and any additional configuration needed for
the process.

TIPS
Choose a lightweight base layer. This can be a
minimal Linux distribution such as Alpine or Busybox.
Read about microcontainers on the Iron.io blog.

Keep the layers to a minimum. Don’t run an update on
the OS and consolidate RUN operations inline using
&& when possible.

Limit the external dependencies to only what’s
needed for the process itself, and vendor ahead of
time so there’s no additional importing when the job
is started.

2. UPLOADING THE IMAGE

Each serverless job is built as a Docker image and
pushed to a registry, where it can be pulled on demand.
This can be a third party public image repository such
as Docker Hub, Quay.io, or your own private registry.

TIPS
Incorporate the job code into a CI/CD pipeline,
building the container image and uploading to a
repository.

Version your images using Docker tags and
document properly. Don’t rely on :latest as what
should always run.

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

11. © 2016 Iron.io, Inc.

3. DETERMINING EVENT TRIGGERS

Once the job image is uploaded, it becomes ready to execute,
either through an event or manually. With
Iron.io, events can be set via API, native SDK, or dashboard.
The automated workflow will then occur when the event
happens or when the job is explicitly called.

TIPS
Map each job to your API, at a minimum within your
documentation, but you can also set endpoints for
direct requests. Using an API Gateway is a common
way to manage events and endpoints across
systems.

Use a load balancer for synchronous requests and
a message queue for asynchronous requests to
throttle and buffer requests when load is high. With
Iron.io, a message queue is built in to the system.

TIPS
Profile your workloads for their most optimal
compute environment. For example, some
workloads are more memory intensive and need
more resources allocated to the container.

Set how many concurrent jobs can execute at any
given time. This can help keep costs down and
ensure you don’t overload the system.

Determine what happens when the job fails. If you
want to auto-retry, set the maximum number of
times with a delay in between.

4. CONFIGURING THE RUNTIME ENVIRONMENT

Operational complexities such as service registration and
container orchestration are abstracted away from the
development lifecycle; however, it is recommended to not
just “set it and forget it” when running in a production
environment.

TIPS
Payload data should be encrypted at the source and
then decrypted within the job code itself. Public key
is a common technique in this scenario.

Connections to databases from within a job process
that are outside the network should be secure,
either through a VPN or IP whitelisting.

Inspect stdout and stderr for each job process. You
can pipe these logs to syslog or a 3rd party logging
service.

5. SECURING AND MONITORING THE JOB

To be production-grade, wrapping the environment with
proper security and monitoring is essential. Given the levels
of abstraction that serverless computing provides, it’s even
more important to gain insight into what’s happening behind
the scenes.

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

12. © 2016 Iron.io, Inc.

1. QUEUE JOB
The job is posted to a message queue, which acts as the temporary
store, holding the job in a persisted state until completed. The message
includes the job metadata, runtime parameters, and any payload data
to be passed into the job process itself.

2. GET JOB
Worker nodes are continually monitoring associated queues for new
jobs. When capacity is available, the worker pops a job off the queue
and pulls the associated Docker image from its registry if a cached
version of the image isn’t already on the machine.

3. EXECUTE PROCESS
The worker then runs the container process with its given resource
allocation. When the process is complete, the container is gracefully
stopped and the resources are freed up for another job.

4. CAPTURE RESULTS:
The container’s stdout/stderr logs are captured and delivered back to
the system or a 3rd party service for further inspection. If the process
fails or timeouts, the job is placed back in the queue where it can be
retried or canceled.

UNDERLYING OPERATIONS

Even though the end-to-end operations are meant to be abstracted away
from the developers, it’s worth knowing what’s happening behind the
scenes to have a clear understanding of the lifecycle of your workloads.
When an event triggers an Iron.io job, the following process takes place:

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

13. © 2016 Iron.io, Inc.

Iron.io operates an enterprise-grade Platform as a Service specifically
meant for powering job-centric workloads throughout their entire
lifecycle. Working with Iron.io is a serverless experience because
the only interface to developers is an API. If you follow the software
development lifecycle and best practices put forth in this whitepaper,
you will be able to extract the true value from the underlying
technology, which results in true meaning for the business.

THE IRON.IO PLATFORM

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

14. © 2016 Iron.io, Inc.

WHY THIS MATTERS
The explosion of container technologies and microservices-oriented
development patterns have shaken up the entire IT ecosystem, forcing
enterprises and vendors alike to modernize how applications are
built and delivered. Much of the initial rush has been focused on the
infrastructure layer, such as orchestration of containers across a
distributed environment effectively. While an incredibly important topic
worthy of its own studies, orchestration only provides the foundation
for the end goal of developer empowerment. What this new serverless
trend has done, and done very well, is focus on the developer
experience at the application layer.

This intersection between the infrastructure layer and the application
layer is where Iron.io sits, further closing the gap between APIs and
containers by improving the developer experience while removing the
operational complexities. The value to any organization is the ability to
keep the focus where it matters most - continuous innovation.

THIS INTERSECTION BETWEEN THE INFRASTRUCTURE
LAYER AND THE APPLICATION LAYER IS WHERE IRON.
IO SITS, FURTHER CLOSING THE GAP BETWEEN APIS
AND CONTAINERS BY IMPROVING THE DEVELOPER
EXPERIENCE WHILE REMOVING THE OPERATIONAL
COMPLEXITIES.

Iron.io White Paper Serverless Computing: Developer Empowerment Reaches New Heights

15. © 2016 Iron.io, Inc.

